Distortions in the Factor Market: Models and Realities

GUNNAR FLYSTAD*

This paper confronts the theory of distortions in the factor market with empirical evidence. It is generally concluded that there would not be much to gain in terms of increased production for the economy as a whole from a technically efficient reallocation of labour and capital between industries. However, distortions in the factor market may be of importance in some sectors of the economy which means that imperfections in the factor market should be of concern for economic policy.

I. INTRODUCTION

The purpose of this paper is to give a short survey of the literature on the welfare effects of distortions in the factor market which to a large extent originated in dealing with important development problems of less developed countries. Then some basic assumptions in these models will be considered and analysed, including the assumption that the government has complete control over the distribution of income. Finally, we discuss the empirical evidence of distortions in the factor market and make some judgements as to the relevance of welfare models of distortions in the factor market for policy questions, especially for less developed countries.

II. A SHORT SURVEY OF THE LITERATURE ON THE WELFARE EFFECTS OF DISTORTIONS IN THE FACTOR MARKET†

The desire to raise the standard of living in less developed countries has in the postwar period given rise to a renewed interest in the economic arguments for protection. The traditional infant-industry argument for protection has been restated and expanded, and many new arguments for protection have been advanced by

*The author is on the faculty of the Norwegian School of Economics and Business Administration, Bergen (Norway). He gratefully acknowledges helpful comments from V. D. Norman, G. M. Gerhardsen, Ole Myrvoll, S. Guribye, Syed Nawab Haider Naqvi and B. Singh on an earlier version of this paper.

†For some excellent surveys of the literature on domestic distortions, from which this survey has strongly benefitted, see Chacholiades [7] chapter 20 and Magee [31].
several distinguished economists, perhaps especially by Hagen [20], Lewis [29], Myrdal [36] and Prebish [42]. These authors argue for protection because of the existence of external economies and factor price differentials, which, in turn, give rise to domestic distortions (i.e. divergences between market prices and opportunity costs).

Thus, the theory of domestic distortions (including the theory of distortions in the factor market) is a direct outgrowth of the activity in the field of economic development and deals primarily with (a) the various distortions which prevent the market from reaching Pareto optimality, and (b) the policy that should be pursued in order to neutralize domestic distortions and achieve Pareto optimality.

The development of the theory of domestic distortions owes much Haberler's [18], classic paper. Additional important contributions were made by Corden [9], Fishlow and David [13], Hagen [20], Meade [34], Naqvi [37] and especially Bhagwati and Ramaswami [4]. The theory was restated and sharpened by Johnson [26] and systematized and generalized by Bhagwati [3].

A main conclusion in these studies is that trade intervention should not be used as a means of correcting domestic distortions. The policy should instead take place at the exact point at which distortions occur.

In this paper we shall be confining ourselves to deal with the distortions which originate in the factor market, in particular with wage differentials in the labour market which have been a main concern of the authors mentioned above.

Concern over wage differentials is not new, as is easily verified by the early works of Cairnes [8], Manoilesco [33], Ohlin [40;41] and Viner [48].

In the postwar period, the subject of factor-price differentials received a great deal of attention as a result of the interest in the economics of less developed countries. Thus, contributions have been made by Bhagwati and Ramaswami [4], Eckaus [12], Fishlow and David [13], Haberler [18], Hagen [20], Johnson [25;26], Lewis [29], and others.

Two different types of factor-price differentials are usually referred to in the literature. First, there may be a differential between the reward of a factor in different industries. Thus, it is usually assumed that wages in industry are higher than wages in agriculture by a margin which can not be accounted for by such factors as higher skills, disutility of urban living, investment in human capital (by training), and moving costs from the rural to the urban sector. Second, even though factor prices may be equal in all industries, factor rewards may not correspond to marginal productivity. Thus, wages may be equal between industry and agriculture, but wages in agriculture may be higher than the marginal productivity of labour as in Lewis [29] who assumes that wages in agriculture are equal to the average - not the marginal - product of labour. Both of these types of factor-price differentials give rise to two distortions at the same time i.e.

\[(a) \ MRS_{LT}^X \neq MRS_{LT}^Y \]

\[(b) \ MRS_{XY} = MRT_{xy}^f \neq MRT_{xy}^d \]

where \(MRS_{LT}^i = \) marginal rate of substitution of labour for land in industry \(i (i = X, Y)\), \(MRS_{XY} = \) the social marginal rate of substitution of \(X\) for \(Y\) in consumption, \(MRT_{xy}^f = \) the social domestic marginal rate of transformation, that is, the opportunity cost of \(X\) in terms of \(Y\), and \(MRT_{xy}^d = \) the foreign marginal rate of transformation, that is, the marginal terms of trade.

As equations (a) and (b) show, factor-price differentials give rise to two major distortions. First, they prevent the equality between the marginal rate of substitution of labour for land in industry \(i (i = X, Y)\), \(MRS_{LT}^i \neq MRS_{LT}^j\). Thus, one gets a misallocation of resources - the economy does not operate on the contract curve and the production possibilities curve is pulled in towards the origin (except at the intercepts). Second, factor-price differentials give rise to a divergence between the commodity market price ratio and the domestic marginal rate of transformation i.e. they give rise to the distortion:

\[MRS_{XY} = MRT_{xy}^f \neq MRT_{xy}^d \]

To prove this, consider the production functions \(Y = Y(L_y, T_y)\) and \(X = X(L_x, T_x)\) of industries \(Y\) and \(X\), respectively, where \(L_i\) and \(T_i\) are labour and land, respectively, in industry \(i (i = X, Y)\). The total derivatives of these production functions are.

\[1. \quad dY = MPP_{L_y} \cdot dL_y + MPP_{T_y} \cdot dT_y \]

\[2. \quad dX = MPP_{L_x} \cdot dL_x + MPP_{T_x} \cdot dT_x \]

where \(MPP_{Li}\) and \(MPP_{Ti}\) stand, respectively, for the marginal physical product of labour and land in industry \(i (i = X, Y)\).

The total amount of land and labour is given and fully utilized. Thus

\[3. \quad dT_y = -dT_x = dT^2 > 0 \]

\[4. \quad dL_y = -dL_x = dL^2 > 0 \]

To avoid misunderstanding, note that \(dT\) and \(dL\) are not changes in total land and labour, respectively. The symbols \(dT\) and \(dL\) without subscripts were introduced in order to write equation 5 as simply as possible.
Assuming perfect competition (ignoring the possibility that factors may not be remunerated according to their marginal productivity), we have: \(W_x = p_x \cdot MPP_{LX} \); \(r_x = p_x \cdot MPP_{TX} \); \(W_y = p_y \cdot MPP_{LY} \); and \(r_y = p_y \cdot MPP_{TY} \) where \(p_i \), \(W_i \) and \(r_i \) are prices, labour costs to the employers per worker and capital costs per unit of capital in industry \(i \) \((i = X, Y)\). Substituting these assumptions into equations 1 and 2 and then forming the marginal rate of transformation in production, we have:

\[
\frac{dY}{dX} = \frac{MRT_{xy}}{\frac{P_x}{P_y}} = \frac{\frac{P_x}{P_y} (W_x \cdot dL + r_y \cdot dT)}{W_x \cdot dL + r_x \cdot dT} = \frac{\frac{P_x}{P_y} \cdot \frac{r_y}{r_x} \cdot \left[\frac{W_y}{r_y} \cdot dL + dT \right]}{W_x \cdot dL + dT}
\]

The equation above shows that if \(r_x = r_y \) and \(W_x \neq W_y \), then \(MRT_{xy} = \frac{P_x}{P_y} \) and the ratio of the international price line will not be tangent to the shrunken production possibilities curve.

A simple illustration may facilitate the understanding of the preceding discussion. Assume that the wage rate \(W_x \) in industry \(X \) is higher than the wage rate \(W_y \) in industry \(Y \), that is \(W_x > W_y \), but that the return on capital in each industry is equal, that is \(r_x = r_y \). Thus, \((\frac{W_x}{r_x}) > (\frac{W_y}{r_y}) \). This implies that the economy is not on the contract curve, and therefore is on a shrunken in production possibilities curve. In the figure below, the solid curve \(A_0B \) is the economy's true production possibilities curve (corresponding to being on the contract curve), while the broken curve \(A_0B \) is the economy's shrunken in frontier. The fixed international price ratio is illustrated by the absolute slopes of the parallel straight lines through \(P_0 \), \(P_1 \) and \(P_2 \). In an economy with a wage differential, therefore, the economy could produce at \(P_0 \) and consume at \(C_0 \). The economy fails to maximize national welfare because (a) it operates on the inferior frontier \(A_0B \) instead of the true frontier \(A_0B \) and (b) it chooses on the inferior production possibilities curve a suboptimal point (\(P_0 \)) instead of the optimal (\(P_1 \)).

Both a tariff and a production tax (or subsidy) restrict the economy to operate on the inferior production possibilities curve \(A_0B \). But whereas the effects of a tariff on welfare are uncertain (because of the distortions it creates in consumption), a production tax on \(Y \) and/or a production subsidy to \(X \), at an appropriate rate to completely offset the divergence between \(MRT_{xy} \) and the international price ratio,

\[
5. \quad \frac{dY}{dX} = \frac{MRT_{xy}}{\frac{P_x}{P_y}} = \frac{\frac{P_x}{P_y} \cdot \frac{r_y}{r_x} \cdot \left[\frac{W_y}{r_y} \cdot dL + dT \right]}{W_x \cdot dL + dT}
\]

Full Pareto optimality, however, can only be achieved by means of appropriate taxes and subsidies on factor use. Here we must be careful. Recall that distortions in the factor market occurred because \(W_x > W_y \), while \(r_x = r_y \). The fundamental equalities \(W_x = W_y \) and \(r_x = r_y \) can thus only be restored by (1) a subsidy to the use of labour in \(X \); and (2) a tax on the use of labour in \(Y \). The economy will then produce at \(P_2 \) and consume at \(C_2 \).

When a tax is imposed on the use of land in \(X \) or a subsidy to the use of land in \(Y \), we have \(W_x > W_y \) and \(r_x > r_y \) even though we may have the equality \(\frac{W_x}{r_x} = \frac{W_y}{r_y} \). Accordingly, in this case the economy may produce on its true production-possibilities curve, but at a suboptimal point such as \(S \) in Fig. 1. (Recall that in this case when \(\frac{W_x}{r_x} = \frac{W_y}{r_y} \), we have from equation 5:

\[
MRT_{xy} = \frac{\frac{P_x}{P_y} \cdot \frac{r_y}{r_x}}{\frac{P_x}{P_y} \cdot \frac{r_y}{r_x}} \quad i.e. \quad MRT_{xy} = \frac{\frac{P_x}{P_y} \cdot \frac{r_y}{r_x}}{\frac{P_x}{P_y} \cdot \frac{r_y}{r_x}}
\]

because \(\frac{r_y}{r_x} < 1 \) by assumption.)

3Note that labour cost per worker will not necessarily be equal to wages received by workers because of tax or taxes on the use of labour.
We conclude that in the case \(r_y = r_x \) and \(W_x > W_y \), full Pareto optimality is restored by means of a subsidy to the use of labour in \(X \) and a tax on the use of labour in \(Y \) at a rate which exactly offsets the distortion. Such an optimal policy leads from a production equilibrium at \(P_0 \) to a production equilibrium at \(P_2 \) in Figure 1. However, if \(W_x > W_y \) and \(r_x > r_y \), but \(W_x/r_x = W_y/r_y \), full Pareto optimality is restored by means of either a subsidy to the use of labour and land in \(X \) or a tax on the use of labour and land in \(Y \) at a rate which exactly offsets the distortion. In this case the production equilibrium would move from \(S \) to \(P_2 \). In both cases an optimal policy leads to production equilibrium at \(P_2 \) and consumption equilibrium at \(C_2 \).

We have now given a short survey of the theory of welfare economics and distortions in the factor market. This theory originated as a result of a discussion of what might be an optimal policy, especially for a less developed country. We shall now discuss the practical relevance of this distortion model. In doing so we shall discuss the relevance of the fact that the theory of welfare and distortion in the factor market (as do most welfare economics) implicitly assume that the government is in complete control over the distribution of income. Then, we shall discuss the empirical evidence of factor market distortions.

On the basis of this discussion we shall try to draw some conclusions as to the practical relevance for economic policy, especially for a less developed country, of the theory of welfare and distortions in the factor market.

III. FACTOR MARKET DISTORTIONS AND THE INCOME DISTRIBUTION PROBLEM

The assumption of total government control over the distribution of income may be of doubtful relevance in analysing the optimal policy response to any market distortion. But, as pointed out by Anand and Joshi [1], the unrealistic is particularly glaring in the case of certain factor market distortions. Thus, it would be very peculiar if the government was completely free to tax unionised workers and reduce their post-tax incomes below their wages to any extent it chooses. This would imply either that trade union activity is directed solely at maintaining the wage of labour, while wage (above the competitive wage) set by trade unions in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors and are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.

In developing this model Anand and Joshi make the additional simplification for ease of exposition that the marginal product of labour in agriculture is constant. Capital is assumed to be immobile between sectors. Labour, on the other hand, is perfectly mobile and fully employed. Workers migrate between sectors because of the tax differential between the two sectors. The problem raised by Anand and Joshi is to determine optimum employment in industry, subject to a goal of an egalitarian distribution of income. Fig. 2 illustrates the relevant points. \(OQ \) is the number of capitalists, while \(O'Q \) is the total labour force. \(MM' \) shows the marginal product of labour in industry, while \(mm' \) shows the marginal product of Labour in agriculture. \(OW \) is the exogenously given minimum real wage in industry. \(Oc \) is the minimum real net income that each capitalist receives. Laissez-faire (i.e. no government intervention) with a factor price distortion in the form of a minimum wage (above the competitive wage) set by trade union in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.

The assumption of total government control over the distribution of income may be of doubtful relevance in analysing the optimal policy response to any market distortion. But, as pointed out by Anand and Joshi [1], the unrealistic is particularly glaring in the case of certain factor market distortions. Thus, it would be very peculiar if the government was completely free to tax unionised workers and reduce their post-tax incomes below their wages to any extent it chooses. This would imply either that trade union activity is directed solely at maintaining the wage of labour, while wage (above the competitive wage) set by trade unions in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.

In their paper, Anand and Joshi investigate a standard dual economy (agriculture and industry) model with a factor price distortion in the form of a minimum wage (above the competitive wage) set by trade union in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.

In developing this model Anand and Joshi make the additional simplification for ease of exposition that the marginal product of labour in agriculture is constant. Capital is assumed to be immobile between sectors. Labour, on the other hand, is perfectly mobile and fully employed. Workers migrate between sectors because of the tax differential between the two sectors. The problem raised by Anand and Joshi is to determine optimum employment in industry, subject to a goal of an egalitarian distribution of income. Fig. 2 illustrates the relevant points. \(OQ \) is the number of capitalists, while \(O'Q \) is the total labour force. \(MM' \) shows the marginal product of labour in industry, while \(mm' \) shows the marginal product of labour in agriculture. \(OW \) is the exogenously given minimum real wage in industry. \(Oc \) is the minimum real net income that each capitalist receives. Laissez-faire (i.e. no government intervention) with a factor price distortion in the form of a minimum wage (above the competitive wage) set by trade union in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.

The assumption of total government control over the distribution of income may be of doubtful relevance in analysing the optimal policy response to any market distortion. But, as pointed out by Anand and Joshi [1], the unrealistic is particularly glaring in the case of certain factor market distortions. Thus, it would be very peculiar if the government was completely free to tax unionised workers and reduce their post-tax incomes below their wages to any extent it chooses. This would imply either that trade union activity is directed solely at maintaining the wage of labour, while wage (above the competitive wage) set by trade unions in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.

In their paper, Anand and Joshi investigate a standard dual economy (agriculture and industry) model with a factor price distortion in the form of a minimum wage (above the competitive wage) set by trade union in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.

The assumption of total government control over the distribution of income may be of doubtful relevance in analysing the optimal policy response to any market distortion. But, as pointed out by Anand and Joshi [1], the unrealistic is particularly glaring in the case of certain factor market distortions. Thus, it would be very peculiar if the government was completely free to tax unionised workers and reduce their post-tax incomes below their wages to any extent it chooses. This would imply either that trade union activity is directed solely at maintaining the wage of labour, while wage (above the competitive wage) set by trade unions in the industrial sector, while wages in agriculture are competitively determined. The two factors of production, labour and capital, are fixed and inelastic in supply. Production functions in both sectors are well behaved. Goods prices are fixed by international trade, so that the two sectors are assumed to produce the same good, viz. foreign exchange. There are no taxes on workers, and the government can only tax profits in industry. There is a fixed number of capitalists who supply the entire capital stock inelastically, subject to receiving a minimum net income. The model is static and there is no saving.
Distortions in the Factor Market

27

Z even if the tax revenue could make such a move possible. In this case, there will be a trade-off between production at international prices and equity. Thus, revenue (MWJ - OQC) could either be used to subsidize manufacturing employment (implying a gain in production), or it could be used as a lump-sum transfer to the agricultural workers. Maximum production at Z (through an employment subsidy of KZ per worker in industry) and equality of labour incomes (through an income subsidy of KZ per worker in agriculture) at the same time can only be achieved when (MWJ - OQC) ≥ KJZ + KZ mW'.

However, when this condition is not met there will be a conflict between production and equity. Thus, moving towards Z by increasing industrial production by means of an employment subsidy is no longer an unqualified social benefit because this will reduce the surplus available for redistribution to the poor agricultural workers.

In order to analyse exactly where production and employment in such a situation will have to take place, Anand and Joshi use a symmetric additive welfare function as shown in equation 1.

\[V = L \cdot U(W) + (N - L) \cdot U(y) + Q \cdot U(c) \] (1)

In the equation above, we have the following symbols

- L = employment in industry
- W = industrial sector minimum wage
- N = total labour force (assumed fixed)
- y = income per capita in the agricultural sector, defined as

\[y = m + \frac{f(L) - WL - cQ}{N - L} \] (2)

where we have the following additional symbols

- m = marginal product in the agricultural sector
- f(L) = the production function in the industrial sector
- c = minimum net income of each capitalist
- Q = total number of capitalists (assumed fixed).

Thus in equation 2 \([f(L) - WL - cQ]\) is the industrial surplus available and used as an income transfer to the agricultural workers.

In equation 1 \(U(\cdot)\) is the social valuation of individual income and satisfies \(U'(\cdot) > 0\) and \(U''(\cdot) \leq 0\).
The problem is to choose industrial employment L so as to maximize social welfare Π, which implies setting $\delta \Pi / \delta L = 0$. Thus a necessary condition for optimum is

$$U(W) - U(y) + (N - L) U'(y) \cdot \frac{\delta y}{\delta L} = 0$$

(3)

$\delta y/\delta L$ can be substituted from equation 2. Thus, by differentiation of this equation, we have

$$\frac{\delta y}{\delta L} = \frac{f'(L) - W}{N - L} + \frac{f(L) - WL - cQ}{(N - L)^2}$$

Inserting this equation into equation 3 gives

$$f'(L) = W^* = W - \frac{U(W) - U(y)}{U'(y)} (y - m)$$

Equation (4) shows the marginal product of labour in industry maximizing the social welfare function, i.e. the value of the shadow wage W^*.

To determine the limits for the shadow wage rate W^*, Anand and Joshi assume the following social valuation function $U(\cdot)$

$$U(y) = \begin{cases} \frac{1}{1 - \epsilon} y, & \epsilon > 0 \\ \log y, & \epsilon = 1 \end{cases}$$

Inserting this equation into equation 4, we have

$$W^* = W - \frac{y}{1 - \epsilon} \left[(\frac{W}{y})^{1 - \epsilon} - 1 \right] - (y - m)$$

When $\epsilon = 0$, society puts the same weight on the income of every person, i.e. the society does not worry about the distribution of income, we have

$$W_0^* = m$$

This result corresponds to maximum production at international prices at Z in Fig. 2. When $\epsilon \rightarrow \infty$ social value is only placed on the income (s) of the worst off. Thus

$$W_w^* = W - (y - m) = (W - y) + m$$

This corresponds to a solution in which the surplus per worker in the agricultural sector is maximized. In general, for $0 < \epsilon < \infty$, the shadow wage W^* lies between the two extreme limits W_0^* and W_w^*. The optimal employment associated with these limits of the shadow wage rate is given by L^0 and L^w, respectively, in Fig. 2. Thus the upper limit of industrial employment is at Z. In this case, it is optimal to increase industrial employment until the value of output at world prices is maximum.

In general, optimal industrial employment will be somewhere between OL^w and OL^0, and OL^s.

What are, then, the implications of the analysis by Anand and Joshi for the Bhagwati-Ramaswami-Srinivasan model with a proportional wage differential between sectors? The Bhagwati-Ramaswami-Srinivasan equilibrium is, as pointed out in section II, characterized by the following two features: (a) the equilibrium would lie along a “shrunk-in” production possibilities curve corresponding to the wage distortion; and (b) the marginal rates of transformation between goods domestically and through trade would differ. On the basis of the analysis by Anand and Joshi we conclude that, in general, optimum welfare would imply $W^* \geq m$. Thus optimum would, in general, involve only partial off-setting of the wage distortion and would lie on a new production possibilities curve outside the old one, but still inside the maximum one (corresponding to being on the contract curve). Features (a) and (b) would continue to exist.

IV. THE EMPIRICAL EVIDENCE OF DISTORTIONS IN THE FACTOR MARKET

We now turn to the question of how important factor market distortions may be in the real world. If it can be shown that distortions in the factor market is of some empirical importance, then the previous analysis, including the analysis by Anand and Joshi, may be of importance for economic policy.

In dealing with the empirical evidence of distortions in the factor market, however, it is important to be aware of the fact that a differential in the factor rewards may not be due to a genuine distortion. Thus as pointed out by Bhagwati and Ramaswami [4], we do not have a genuine distortion in the factor market if a wage differential is due to e.g. "(1) a utility preference between occupations on the part of the wage-earners, or (2) a rent (on scarce skills), or (3) a return on investment in human capital (by training), or (4) a return on investment in human capital (by training), or (5) a return on investment in human capital (by training), or (6) prestige-cum-humanitarian grounds ("I must pay my man a decent wage") that fix wages at varying levels in different sectors". There is a genuine distortion, however, if a wage differential is attributable to e.g. "(5) trade-union intervention, or (6) prestige-cum-humanitarian grounds ("I must pay my man a decent wage") that fix wages at varying levels in different sectors". Thus, the previous analysis of distortions in the labour market applies, strictly speaking, only to distortions produced by e.g. reasons (5) and (6).
In the capital market a genuine distortion may not exist if a differential in the return on capital is due to a (7) risk premium, but may represent a genuine distortion if (8) the government or the banking system intervene in a discriminatory way in the capital market as it may happen with the interest rate facing the "modern" and "traditional" sector in many less developed countries.

Thus any observed differential in the return to a factor of production may be caused by both a genuine and a non-genuine distortion in the factor market. However, in empirical investigations it will usually be impossible to separate these two types of distortions, and one way to interpret an observed differential to a factor of production is that this differential is due exclusively to a genuine distortion in the factor market. To the extent that this may not be true, the genuine efficiency losses may both be less or greater than what has been estimated from existing empirical investigations, perhaps most likely less than these investigations show.

Only few empirical studies of the efficiency losses due to distortions in the factor market have so far been made. Thus, Harberger [22] has studied the cost of distortions in the labour market in the Chilean economy and concluded that the reallocation of labour would not raise national welfare by more than 15 percent. Dougherty and Selowsky [11] have examined the effects of wage differentials between industrial sectors for labour of equal quality in Columbia, and concluded that losses, due to misallocation of labour between sectors, were unlikely to be serious and most likely less than 2 percent of total output. However, these studies only consider the distortions that may exist in the labour market, and do not consider the loss in economic efficiency that may be due to distortions in the capital market. One reason why so few empirical studies of distortions in the factor market are available may be that data of both labour and capital in the different sectors and the return to these factors of productions only to a small extent have been available.

One country for which such data have been available, however, is Norway, and I shall reproduce some of the results of a quite detailed empirical investigation of distortions in the factor market for this country Fløystad [15].

Table 1 shows the return to labour and capital in Norway in the years 1955, 1961 and 1965 and the ranking of industries according to the return to these factors of production. The table is confined to the Manufacturing and Construction industries.

In table 1 the industries are classified in sheltered, import-competing and export industries. The prices on the commodities in the sheltered industries are not supposed to be affected by prices in the international market but by internal supply and demand, while the prices in the export and import-competing industries are supposed to be determined by the international market. The sector-specification used in this paper is with some minor modifications the same as in the model used to evaluate the consequences of an income settlement in Norway.\(^6\)

\(^6\) See, e.g., Aukrust [2].
As shown in table 1, return on capital varies considerably between industries and the ranking of the return on capital by industry is quite different in 1955, 1961 and 1965. Moreover, it is also very likely that figures showing the return on capital for the whole postwar period would have shown considerable instability due to great fluctuations in the non-wage income.

Also the wages vary considerably between industries, but the wage structure has been much more stable than the structure of the return on capital. Thus, the difference between the ranking of wages in any industry in two different years in table 1 does not exceed 3 in more than 1 out of 17 industries. Moreover, the National Accounts show that the wage structure has been remarkably stable in the whole postwar period.

As shown in table 1, there seems to be a fairly clear relationship between the level of wages and the increase in employment. Thus, the 10 industries which in 1965 were paying the highest salaries had with one exception an increase in employment in the period 1955–1965, while the remaining industries paying least had with two exceptions a decrease in employment. The scant information available seems to suggest that it is not likely that the differences in wage level per man-year in the different industries can be explained to a large extent by differences in the skill composition between industries. Thus, the Norwegian Wage Statistics indicate that wages for the same type of skill in the different industries varied more or less in the same way as did total wages per man-year.7

The empirical evidence of the return to labour and capital indicates that the distortions in the factor market may be quite severe. This seems to be especially true for the return on capital.

In order to estimate the efficiency losses due to distortions in the factor market, I have estimated the technically efficient allocation of labour and capital in the 17 industries in table 1 in 1965. In doing so I used the following equations:

\[
\begin{align*}
\delta X_1 & = \delta X_2 = \ldots = \delta X_{17} \\
\delta L_1 & = \delta L_2 = \ldots = \delta L_{17} \\
\delta K_1 & = \delta K_2 = \ldots = \delta K_{17} \\
X_2^0 & = X_2 (K_2, L_2) \\
X_{17}^0 & = X_{17} (K_{17}, L_{17}) \\
K_1 + K_2 + \ldots + K_{17} & = K_0 \\
L_1 + L_2 + \ldots + L_{17} & = L_0
\end{align*}
\]

where \(X_i\), \(K_i\), and \(L_i\) are factor income, capital, and labour, respectively, in sector no.

7See, [39].
capital and labour, respectively, in 1965. The production functions in equation 2 are assumed to show constant returns to scale.

In the system above we have 34 equations and 34 unknowns viz. L_1, \ldots, L_{17} and K_1, \ldots, K_{17} and the system is determined. Moreover, since labour and capital in all sectors have been determined from the equations above, factor income in sector no. 1 can be estimated by means of the production function for this sector (not shown in equation 2 above). The system above implies that the factor income in sector no. 1 is maximized subject to a given factor income in the other sectors and total labour and capital in all sectors in 1965.

In estimating a technically efficient situation, production functions showing constant return to scale and alternative elasticities of substitution between labour and capital were used. Thus, if the elasticity of substitution between labour and capital was assumed to be equal to one a Cobb-Douglas production function was used. If the elasticity of substitution between labour and capital was assumed to be different from one a CES production function of the type introduced by Arrow et al. was assumed. Moreover, in estimating the parameters in these production functions, it was necessary to use the wage/capital income ratios in the different industries in 1965. However, these wage/capital income ratios may fluctuate quite a lot from year to year, and in computations the ratios existing in 1955 and 1961 were also assumed to see the impact on the results.

The factor income in the 17 industries in table 1 was for several industries maximized one by one, subject to the factor income in the other industries and the total labour force and capital stock as observed in 1965. It appears that the results are not very sensitive to the industry in which the factor income is maximized.\(^8\)

In estimating a technically efficient situation, production functions showing constant return to scale and alternative elasticities of substitution between labour and capital were used. Thus, if the elasticity of substitution between labour and capital was assumed to be equal to one a Cobb-Douglas production function was used. If the elasticity of substitution between labour and capital was assumed to be different from one a CES production function of the type introduced by Arrow et al. was assumed. Moreover, in estimating the parameters in these production functions, it was necessary to use the wage/capital income ratios in the different industries in 1965. However, these wage/capital income ratios may fluctuate quite a lot from year to year, and in computations the ratios existing in 1955 and 1961 were also assumed to see the impact on the results.

The factor income in the 17 industries in table 1 was for several industries maximized one by one, subject to the factor income in the other industries and the total labour force and capital stock as observed in 1965. It appears that the results are not very sensitive to the industry in which the factor income is maximized.\(^8\)

Table 2 shows the factor income in the Chemicals and products of chemicals etc. industry in 1965 if the factor income in this industry is maximized. The computations were run for alternative magnitudes of the elasticity of substitution between labour and capital σ_1 assumed equal in all industries as well as for alternative wage/capital income ratios Z_1 and alternative assumptions about how much of total depreciation is due to production and capital stock, respectively. Since, however, the results of the computations were not very sensitive to the type of depreciation function assumed, the discussion below will be confined to the case where depreciation is only due to production.\(^9\)

As shown in table 2, the increase of factor income from a technically efficient reallocation of labour and capital between industries is to be between 100 and 400 mill. N.kr. depending on the elasticity of substitution between labour and capital, and the wage/capital income ratios assumed. This corresponds to an increase of total factor income in the 17 industries in table 1 of between 0.7 and 3%.\(^10\)

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Factor Income} & \textbf{Maximized} \\
\hline
\textbf{Observed or Computed} & 0.5 & 0.8 & 1.0 & 1.25 \\
\hline
Z_{1955}^a & 1170 & 1289 & 1360 & 1408 & 1467 \\
Z_{1961}^a & 1111 & 1273 & 1360 & 1412 & 1473 \\
Z_{1965}^a & 1126 & 1317 & 1403 & 1453 & 1508 \\
\hline
\end{tabular}
\caption{Factor Income in the Chemicals, etc. Industry in 1965, and the Factor Income in this Industry if Maximized in the Same Year Mill. N.kr.}
\end{table}

\(^8\)The computations for 1965 were run using 1955, 1961 and 1965 wage/capital income ratios, respectively. Therefore, the table shows factor income in 1965 using these alternative wage/capital income ratios. Note that in using the wage/capital income ratios for 1955 and 1961, it was necessary to use computed factor income for 1965 as a reference for a comparison with the maximized figures of factor income, since using these wage/capital income ratios imply that the return on capital in 1965 has to yield. For more details, see Fløystad [15].

This increase in the factor income seems to be quite independent of the wage/capital income ratios used. However, there is a clearly positive correlation between

\(^9\)See Fløystad [14] where I also reproduce the results for maximizing the factor income in the Paper and paper products industry.

\(^{10}\)Total factor income in the 17 industries in table 1 was in 1965 14.689 Mill. N.kr. See CBS [38], table 11.
the factor income and the elasticity of substitution between labour and capital. This is due to the fact that a low elasticity of substitution between labour and capital results in a lesser reallocation of labour and capital than does a high elasticity.\(^{11}\)

The technically efficient or optimal allocation of labour and capital between industries was especially sensitive to alternative wage/capital income ratios used. This is shown in table 3 and 4 where we reproduce the results of the computations for \(\sigma^*_j = 1.25\) assumed equal in all industries.

From tables 3 and 4, it follows that one has to be very careful in drawing any conclusions about how labour and capital should be reallocated between industries in order to get a more technically efficient allocation of labour and capital, since the question about whether the actual labour and capital in one industry is less or more than should be an optimal allocation of labour and capital heavily depends on prices on products and inputs, and thereby also on the wage/capital income ratios. Thus, in 6 out of 16 industries in table 3 (the Chemicals and product of chemicals etc. industry where the factor income was maximized is excluded), an industry which with the 1965 wage/capital income ratios had too much or the right amount of labour as compared to the optimal situation, had with the 1961 wage/capital income ratio too little labour, while two industries which with the 1965 wage/capital income ratio had too little labour with the 1961 wage/capital income ratio had too much labour. Similar conclusions also hold true for capital.

In table 5, we have computed the marginal return to labour and capital in a technically efficient situation for alternative magnitudes of the elasticity of substitution between labour and capital assumed equal in all industries, and compared the results with the observed figures.

The computations in this table were run for the wage/capital income ratios existing in the different industries in 1965.

As seen from table 5 the optimal return to labour and capital is quite independent of the magnitude of the elasticity of substitution between labour and capital. Thus the difference between optimal wages computed for the lowest and highest alternative of the elasticity of substitution between labour and capital did only differ by more than 300 N. kr. in a few industries, while for capital the difference is seldom more than 10%.

As seen from table 5, the actual wages are quite close to optimal wages. Thus, 15 out of 17 industries showed a difference between actual and optimal wages of less than 10% for the highest alternative of the elasticity of substitution between labour and capital, while only 9 out of 17 industries had a difference between actual and optimal return on capital of less than 10%.

\(^{11}\)For more details as to these results, see Fløystad [15].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheltered Industries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Food</td>
<td>119.6</td>
<td>105.7</td>
<td>103.5</td>
</tr>
<tr>
<td>2. Beverages</td>
<td>178.3</td>
<td>128.1</td>
<td>95.3</td>
</tr>
<tr>
<td>3. Wood and cork products, furniture, and fixtures</td>
<td>91.9</td>
<td>95.9</td>
<td>103.5</td>
</tr>
<tr>
<td>4. Printing, publishing and allied industries</td>
<td>103.9</td>
<td>144.8</td>
<td>135.3</td>
</tr>
<tr>
<td>5. Leather and rubber products</td>
<td>92.1</td>
<td>96.7</td>
<td>103.6</td>
</tr>
<tr>
<td>6. Non-metallic mineral products</td>
<td>81.6</td>
<td>98.5</td>
<td>100.0</td>
</tr>
<tr>
<td>7. Construction</td>
<td>109.7</td>
<td>99.8</td>
<td>100.9</td>
</tr>
<tr>
<td>Export Industries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Basic metal industries</td>
<td>77.2</td>
<td>96.8</td>
<td>93.8</td>
</tr>
<tr>
<td>16. Paper and paper products</td>
<td>96.3</td>
<td>76.9</td>
<td>76.6</td>
</tr>
<tr>
<td>17. Chemicals and products of chemicals, petroleum and coal</td>
<td>72.9</td>
<td>72.2</td>
<td>69.5</td>
</tr>
</tbody>
</table>
Table 5
Wages and Return on Capital in 1965, Wages and Return on Capital Computed from the Production Function Using 1965 Data of Labour and Capital, Wages and Return on Capital in the Optimal Situation for Alternative Magnitudes of the Elasticity of Substitution between Labour and Capital, and the Relative Marginal Return to Labour and Capital (The Relative Marginal Returns to These Factors of Production in the Electrical Machinery etc. = 100) for an Elasticity of Substitution between Labour and Capital Equal to 1.25. Factor Income in the "Chemicals and Products of Chemicals etc.," Industry is Maximized. Wages per Man-year in N. kr. Return on Capital per One N. kr. of the Value of the Capital Equipment

<table>
<thead>
<tr>
<th>Industry</th>
<th>Computed Capital Returns 1965</th>
<th>Return on Capital in the Optimal Situation</th>
<th>Wages 1965</th>
<th>Computed Wages</th>
<th>Relative Returns Elasticity=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheltered Industries</td>
<td></td>
<td>Return in Capital on * 0.5 0.8 1.0 1.25</td>
<td>Wages 1965</td>
<td>Computed Wages</td>
<td>Relative Returns Elasticity=100</td>
</tr>
<tr>
<td>1. Food</td>
<td>0.107</td>
<td>0.107 0.098 0.099 0.100 0.101</td>
<td>0.101</td>
<td>18736</td>
<td>19598</td>
</tr>
<tr>
<td>2. Beverages</td>
<td>0.108</td>
<td>0.108 0.112 0.111 0.114</td>
<td>0.114</td>
<td>22500</td>
<td>21889</td>
</tr>
<tr>
<td>3. Wood and cork products,</td>
<td></td>
<td>Return in Capital on * 0.5 0.8 1.0 1.25</td>
<td>Wages 1965</td>
<td>Computed Wages</td>
<td>Relative Returns Elasticity=100</td>
</tr>
<tr>
<td>furniture and fixtures</td>
<td></td>
<td>Return on Capital in the Optimal Situation</td>
<td>Wages 1965</td>
<td>Computed Wages</td>
<td>Relative Returns Elasticity=100</td>
</tr>
<tr>
<td>4. Printing, publishing and allied</td>
<td>0.118</td>
<td>0.118 0.104 0.106 0.107</td>
<td>0.108</td>
<td>20000</td>
<td>20668</td>
</tr>
<tr>
<td>industries</td>
<td></td>
<td>Return on Capital in the Optimal Situation</td>
<td>Wages 1965</td>
<td>Computed Wages</td>
<td>Relative Returns Elasticity=100</td>
</tr>
<tr>
<td>5. Leather and rubber products</td>
<td>0.119</td>
<td>0.119 0.106 0.110 0.112</td>
<td>0.111</td>
<td>20556</td>
<td>21192</td>
</tr>
<tr>
<td>6. Non-metallic mineral products</td>
<td>0.119</td>
<td>0.119 0.116 0.117 0.118</td>
<td>0.118</td>
<td>22419</td>
<td>22705</td>
</tr>
<tr>
<td>7. Construction</td>
<td>0.149</td>
<td>0.149 0.126 0.129 0.131</td>
<td>0.133</td>
<td>25046</td>
<td>25276</td>
</tr>
<tr>
<td>Import-competing Industries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Tobacco</td>
<td>0.000</td>
<td>0.000 0.102 0.105 0.107</td>
<td>0.108</td>
<td>20556</td>
<td>20556</td>
</tr>
<tr>
<td>9. Textiles</td>
<td>0.088</td>
<td>0.088 0.088 0.088 0.089</td>
<td>0.090</td>
<td>16638</td>
<td>18178</td>
</tr>
<tr>
<td>10. Footwear, other wearing</td>
<td>0.150</td>
<td>0.150 0.091 0.093 0.095</td>
<td>0.097</td>
<td>16630</td>
<td>18232</td>
</tr>
<tr>
<td>apparel and made-up textile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goods</td>
<td>0.129</td>
<td>0.129 0.118 0.120 0.121</td>
<td>0.123</td>
<td>23014</td>
<td>23470</td>
</tr>
</tbody>
</table>

Continued -
The optimal return to labour and capital also varies significantly between industries for alternative wage/capital income ratios assumed. This is shown in tables 6 and 7 where we show the optimal return to labour and capital for alternative wage/capital income ratios, as well as the elasticities of substitution between labour and capital which were found in the technically efficient situation for 1965 using the 1965 wage/capital income ratios. These results refer to an elasticity of substitution between labour and capital equal to 1.25, but other alternatives of this elasticity would have given similar results, indicating that quite serious distortions may exist in the factor market even in a technically efficient situation.

The optimal return to labour and capital also varies significantly between industries for alternative wage/capital income ratios assumed. This is shown in tables 6 and 7 where we show the optimal return to labour and capital for alternative wage/capital income ratios, and for an elasticity of substitution between labour and capital equal to 1.25. The difference still found in the marginal return to labour and capital in an optimal situation between industries is not very surprising given the fact that the wage/capital income ratios are fluctuating quite a lot from year to year. Thus, it would most likely only happen by chance that the marginal returns to labour and capital would become equal in the different industries. This, however, indicates that the conclusions of quite serious distortions in the factor market which were found in the technically efficient situation for 1965 using the 1965 wage/capital income ratios do not have to be significantly modified when other wage/capital income ratios are assumed.

From the analysis in this section, we may conclude:

(a) The return to labour and capital varies a lot between industries in the Norwegian economy as it also may do in many other countries. The structure of wages seems quite stable over time, while the structure of the return on capital is quite unstable mostly due to business cycles. This may indicate that quite important distortions exist in the factor market although they may not necessarily be due to genuine distortions.

(b) However, there would not be much to gain in terms of increased production from a technically efficient reallocation of labour and capital between industries. The maximum possible increase in production seems to be at most 3% of output.

This last conclusion is not very sensitive to alternative assumptions of the magnitude of the elasticity of substitution between labour and capital as well as to assumptions of alternative depreciation functions and wage/capital income ratios.

12However, these differences in the marginal return to labour and capital between industries may not be due to genuine distortions in the factor market as our previous discussion may indicate.

13See Flipsvatd [16].
The optimal allocation of labour and capital, and optimal return to these factors of production seem, however, to be quite sensitive to cyclical fluctuations in the wage/capital income ratios. This is especially true for capital. Therefore, one has to be very careful in drawing any conclusions about what should be done in order to make the allocation of labour and capital between industries more technically efficient.

The theory of distortions in the factor market originated as a result of a discussion of what might be an optimal policy, especially for a less developed country, in an economy with wage differentials in the labour market. One of the conclusions of this discussion was that an economy with genuine distortions in the factor market can only achieve full Pareto optimality by means of appropriate taxes and/or subsidies on factor use.

V. CONCLUSIONS
This analysis implicitly assumed that the government is in complete control of the distribution of income. If this is not true Anand and Joshi have shown that: (a) it may not be possible to offset market distortions fully even if it were desirable to do so since government revenue may be insufficient for the purpose; and (b) it may not be desirable to offset market distortions fully even if it were possible to do so, since this may imply reduction in government revenue available for income distribution policy. Thus, departures from a technically efficient allocation of resources may be called for as part of a rational response by governments to the limitations they face in carrying out a desirable redistribution policy.

Although considerable attention has been given to the theoretical aspects of distortions in the factor market, few empirical studies have been made. One such study is by the present author using data for Norway. The main conclusions of this study is that it would not be much to gain in terms of increased production from a technically efficient reallocation of labour and capital between industries. Also, the technically efficient allocation of labour and capital is quite sensitive to alternative magnitudes of certain parameters in the production function, especially to the wage/capital income ratios which may vary over time due to e.g. business cycles. Therefore, one has to be very careful in deciding what is in fact a technically efficient allocation of labour and capital between industries and also in deciding what should be done to make this allocation more technically efficient. Moreover, at least in the case of Norway, the analysis made by Anand and Joshi may not be of great practical importance. However, one can not exclude the possibility that their analysis may be of importance for some less developed countries.

The empirical evidence of distortions in the factor market should not mean that a less developed country should pay no attention to distortions in the factor market. Distortions in the factor market may be of importance in some sectors of the economy in any country, although they may not be of importance for the economy as a whole. Also, in the theoretical literature, the type of distortion in the factor market that has been put to the forefront has been that of wage differentials. However, the distortions that may exist in the capital market may be the most important. Thus, in many less developed countries governments and banks discriminate between the traditional and the modern sector, so that the rate of interest facing the traditional sector is much higher than the one facing the modern sector. Not only does this type of discrimination create a technically inefficient allocation of labour and capital between industries, but results also in a distorted distribution of income in favour of the well to do in the modern sector. Thus, if a less developed country is in favour of both a more equal distribution of income and a more technically efficient allocation of labour and capital between industries, it should try hard to get the capital market working more perfect.

REFERENCES

